Odd vertex equitable even labeling of graphs
نویسندگان
چکیده
منابع مشابه
Even vertex odd mean labeling of graphs
In this paper we introduce a new type of labeling known as even vertex odd mean labeling. A graph G with p vertices and q edges is said to have an even vertex odd mean labeling if there exists an injective function f : V (G) → {0, 2, 4, . . . , 2q−2, 2q} such that the induced map f∗ : E(G) → {1, 3, 5, . . . , 2q− 1} defined by f∗(uv) = f(u)+f(v) 2 is a bijection. A graph that admits an even ver...
متن کاملVertex Equitable Labeling of Double Alternate Snake Graphs
Let G be a graph with p vertices and q edges and A = {0, 1, 2, . . . , [q/2]}. A vertex labeling f : V (G) → A induces an edge labeling f∗ defined by f∗(uv) = f(u) + f(v) for all edges uv. For a ∈ A, let vf (a) be the number of vertices v with f(v) = a. A graph G is said to be vertex equitable if there exists a vertex labeling f such that for all a and b in A, |vf (a) − vf (b)| ≤ 1 and the indu...
متن کاملSome Graph Operations Of Even Vertex Odd Mean Labeling Graphs
A graph with p vertices and q edges is said to have an even vertex odd mean labeling if there exists an injective function f:V(G){0, 2, 4, ... 2q-2,2q} such that the induced map f*: E(G) {1, 3, 5, ... 2q-1} defined by f*(uv)= f u f v 2 is a bijection. A graph that admits an even vertex odd mean labeling is called an even vertex odd mean graph. In this paper we pay our attention to p...
متن کاملvertex equitable labeling of double alternate snake graphs
let g be a graph with p vertices and q edges and a = {0, 1, 2, . . . , [q/2]}. a vertex labeling f : v (g) → a induces an edge labeling f∗ defined by f∗(uv) = f(u) + f(v) for all edges uv. for a ∈ a, let vf (a) be the number of vertices v with f(v) = a. a graph g is said to be vertex equitable if there exists a vertex labeling f such that for all a and b in a, |vf (a) − vf (b)| ≤ 1 and the in...
متن کاملFurther results on odd mean labeling of some subdivision graphs
Let G(V,E) be a graph with p vertices and q edges. A graph G is said to have an odd mean labeling if there exists a function f : V (G) → {0, 1, 2,...,2q - 1} satisfying f is 1 - 1 and the induced map f* : E(G) → {1, 3, 5,...,2q - 1} defined by f*(uv) = (f(u) + f(v))/2 if f(u) + f(v) is evenf*(uv) = (f(u) + f(v) + 1)/2 if f(u) + f(v) is odd is a bijection. A graph that admits an odd mean labelin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proyecciones (Antofagasta)
سال: 2017
ISSN: 0716-0917
DOI: 10.4067/s0716-09172017000100001